A Variable Temperature Nuclear Magnetic Resonance Spectroscopy Study of Nitrogen Inversion in Medium-ring Monocyclic and Bicyclic Systems¹

By J. M. LEHN* and J. WAGNER

(Institut de Chimie, 1 rue Blaise Pascal, Strasbourg-67, France)

Summary Nitrogen inversion barriers and structural effects on the barriers have been studied by variable temperature n.m.r. spectroscopy in monocyclic (six- and sevenmembered ring) and bicyclic (bicyclo[2,2,2]octane and bicyclo[3,2,2]nonane) amines. THE study of nitrogen inversion in unstrained systems is made difficult by two factors: (i) the ambiguity in identifying the observed process,² as hindered rotation or hindered ring inversion may occur together with nitrogen inversion; (ii) the relatively low energy barriers expected for such

in (VI)-(VII) also occurs, but the substituent effect on barrier height produced by replacing N-CD₃ (VI) by N-Cl (VII) is similar to that obtained for (II) and (III) and

Compound	Signal observed (at T°)	<i>J</i> ав (Hz)	$\Delta \mathbf{v_{AB}}$ (Hz)	T_{c} (°)	$\Delta G_{\mathbf{c}}^{\ddagger}$ (kcal/mole)
(I)	CH_2	11.4 \pm 0.3	$49.7~\pm~0.5$	-94 ± 3	$8{\cdot}6~\pm~0{\cdot}3$
(11)	$\begin{array}{c} (-120) \\ CH_2(\alpha) \\ (-105) \end{array}$	9.0 ± 1.0	$\textbf{27.0} \pm \textbf{2}$	-140 ± 5	6.4 ± 0.5
(III)	$\begin{array}{c} (-165) \\ \mathrm{CH}_{2}(\alpha) \\ (-120) \end{array}$	13.0 ± 0.5	$25{\cdot}0~{\pm}~1$	-100 ± 3	8.4 ± 0.3
(IV)	$\begin{array}{c} (-120) \\ CH_2 (\alpha) \\ (-127) \end{array}$	$8{\cdot}6~\pm~0{\cdot}5$	$51{\cdot}8~{\pm}~1{\cdot}0$	-98 ± 3	8.4 ± 0.3
(V)	$\begin{array}{c} (-127) \\ CH_2(\alpha) \\ (-115) \end{array}$	11.0 \pm 0.5	$38{\cdot}5~{\pm}~1{\cdot}0$	-54 ± 2	10.6 ± 0.2
(VI)	$\begin{array}{c} (-113) \\ CH_2 (\alpha) \\ (-122) \end{array}$	11.0 ± 0.3	32.0 ± 0.8	-92 ± 3	8.8 ± 0.3
(VII)	(-122) CH ₂ (α) (-112)	10.5 ± 0.3	$38\cdot4\pm0\cdot5$	-65 ± 2	$10{\cdot}1~{\pm}~0{\cdot}2$

Spectral data and activation parameters for nitrogen inversion in compounds (I-VII)^a

^a Measured at 60 MHz using a Varian A-60 spectrometer; solvent, CHFCl₂, except for (II) (CHF₂Cl).

spectroscopy. The results are listed in the Table.[†] In these systems there is no hindered rotation problem.

In compound (I), the barrier to ring inversion is expected to be lowered with respect to N-methylpiperidine by the introduction of the carbonyl group, as cyclohexanone $(<5.2 \text{ kcal/mole}^4)$ has a much lower inversion barrier than cvclohexane (10.8 kcal/mole⁵). Thus ring inversion should not interfere with nitrogen inversion. In the sevenmembered-ring compounds (II) and (III) pseudo-rotation is expected to present a barrier of the order of 2-3 kcal/mole.6 Ring inversion is precluded by the bicyclic nature of systems (IV)-(VII). Inversion of the three-atom bridge

(IV) and (V), thus favouring nitrogen inversion as the observed process.[‡]

The following preliminary conclusions may be drawn from the results listed in the Table and from the literature data: (i) the barriers to nitrogen inversion in cyclic tertiary amines depend on ring size (n) and decrease in the order: n = 3 (ca. 20 kcal/mole⁷) > n = 6 [ca. 8.5 kcal/mole, (I)] $\sim n = 4$ (ca. 8.5 kcal/mole⁸) > n = 5 (ca. 8 kcal/mole^{1,3}) > n = 7 [ca. 6.5 kcal/mole, (II)³]; (ii) the inversion barrier is the same in the bicyclo[2,2,2]-system (IV) as in the monocyclic system (I), but it is appreciably higher in (VI) and (VII) than in (II) and (III). There may be a special barrier-raising effect in some bicyclic systems§; (iii) the replacement of the CH₃ group by a chlorine atom on nitrogen leads to a barrier increase, in agreement with the effect found in other systems.^{1,2,8} The magnitude of the effect depends on the structure of the molecule¹ but its generality may help to distinguish nitrogen inversion from other processes.

(Received, February 9th, 1970; Com. 181.)

† An activation free energy of ca. 7 kcal/mole has been reported recently for compound (II) (ref. 3).

§ The reality of such a "bicyclic effect" seems to be confirmed by recent findings of higher barriers than expected on the basis of angle-strain effects, in bicyclo[2,2,1]- (refs 9 and 10) and bicyclo[3,3,1]-systems (ref. 10).

¹ Previous paper in the series: J. M. Lehn and J. Wagner, submitted for publication.

- ¹ J. B. Lambert and W. L. Oliver, jun., *Tetrahedron Letters*, 1968, 6187.
 ³ J. B. Lambert and W. L. Oliver, jun., *J. Amer. Chem. Soc.*, 1969, 91, 7774.
 ⁴ J. T. Gerig, *J. Amer. Chem. Soc.*, 1968, 90, 1065; F. D. Jensen and B. H. Beck, *ibid.*, p. 1066.
- ⁵ F. A. L. Anet and A. J. R. Bourn, J. Am'r. Chem. Soc., 1967, 89, 760.
 ⁶ J. B. Hendrickson, J. Amer. Chem. Soc., 1961, 83, 4537. See also E. S. Glazer and R. Knorr, unpublished work, reported in J. D. Roberts, Chem. in Britain, 1966, 529.
 - ⁷ M. Jautelat and J. D. Roberts, J. Amer. Chem. Soc., 1969, 91, 642.

 - ⁸ J. M. Lehn and J. Wagner, *Chem. Comm.*, 1968, **148**. ⁹ V. Rautenstrauch, *Chem. Comm.*, 1969, 1122; R. Kitzing, R. Fuchs, M. Joyeux, and H. Prinzbach, *Helv. Chim. Acta*, 1968, **51**, 888.
- ¹⁰ J. M. Lehn and J. Wagner, unpublished results.

In addition, if bridge flipping were the observed process it should also be present in the secondary amine (CH₃ replaced by H) corresponding to (VI). This compound has a temperature independent n.m.r. spectrum down to -135°